2\% (50-year)

Tevee Reach Name: A_50_2073, Return Period: 50 YR, Project Year: 2073

Probability of Exceedance (-)

Levee Reach Name: B_50_2073, Return Period: 50 YR, Project Year: 2073

Tevee Reach Name: D_50_2073, Return Period: 50 YR, Project Year: 2073

Tlevée Reach Name: E_50_2073, Return Period: 50 YR, Project Year: 2073

Levee Reach Name: F_50_2073, Return Period: 50 YR, Project Year: 2073

Probability of Exceedance (-)

\$evee Reach Name: G_50_2073, Return Period: 50 YR, Project Year: 2073

Levee Reach Name: H_50_2073, Return Period: 50 YR, Project Year: 2073

© Levee Reach Name: I_50_2073, Return Period: 50 YR, Project Year: 2073

Levee Reach Name: J_50_2073, Return Period: 50 YR, Project Year: 2073

Probability of Exceedance (-)

Probability of Exceedance (-)

tevee Reach Name: C_100_2073, Return Period: 100 YR, Project Year: 2073

走evee Reach Name: F_100_2073, Return Period: 100 YR, Project Year: 2073

建evee Reach Name: I_100_2073, Return Period: 100 YR, Project Year: 2073

杂evee Reach Name: J_100_2073, Return Period: 100 YR, Project Year: 2073

Elevation (ft. NAVD88 2004.65)
Probability of Exceedance (-)

0.5% (200-year)

tevee Reach Name: A_200_2073, Return Period: $\mathbf{2 0 0}$ YR, Project Year: 2073

Probability of Exceedance (-)
20 Design Elevation = 13fHydraulic design charancteristics (mean and standard dev

 Significant wave height af toe $\mathrm{H}_{\mathrm{s}}=2.4 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.24 \mathrm{ft}$
Peak period $\mathrm{T}=3 \mathrm{~s} ; \sigma_{\mathrm{T}}=0.6 \mathrm{~s}$ Peak period $\mathrm{T}_{p}=3 \mathrm{~s} ; \sigma_{T p}=0.6 \mathrm{~s}$

Probability of Exceedance (-)
20 Design Elevation $=12$. Wydraulic design characteristics (mean and standard dev

Probability of Exceedance (-)
20 Design Elevation = 12 ftydraulic design characteristics (mean and standard dev
 Peak period $T_{\mathrm{p}}=3 \mathrm{~s} ; \sigma_{\mathrm{Tp}}=0.6 \mathrm{~s} \mathrm{~s}=2.4 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.24 \mathrm{ft}$

tevee Reach Name: E_200_2023, Return Period: 200 YR, Project Year: 2023

Probability of Exceedance (-)

Probability of Exceedance (-)
20 Design Elevation $=13$ fitydraulic design characteristics (mean and standard dev till water level $\zeta=8.6 \mathrm{ft} ; \sigma=0.80623 \mathrm{ft}$ Significant wave height af toe $\mathrm{H}=3.8 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.38 \mathrm{ft}$ Peak period $\mathrm{T}_{\mathrm{p}}=3.2 \mathrm{~s} ; \sigma_{\mathrm{Tp}}=0.64 \mathrm{~s}$

5
0
Roughness Factor = 1
Wave Angle Factor = 1

本evee Reach Name: F_200_2023, Return Period: 200 YR, Project Year: 2023

Probability of Exceedance (-)

Probability of Exceedance (-)

Probability of Exceedance (-)

Probability of Exceedance (-)

本evee Reach Name: J_200_2023, Return Period: 200 YR, Project Year: 2023

Probability of Exceedance (-)

Probability of Exceedance (-)

 Significant wave height af toe $\mathrm{H}_{\mathrm{s}}=2.4 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.24 \mathrm{ft}$
Peak priod T $=3 \mathrm{~s}: \sigma=06 \mathrm{~s}$

Berm Factor $=1$
Roughness Factor $=1$
0 . Wave Angle Factor = 1
050

0.2\% (500-year)

Probability of Exceedance (-)

tevee Reach Name: E_500_2023, Return Period: 500 YR, Project Year: 2023

Probability of Exceedance (-)

Probability of Exceedance (-)
20 Design Elevation = 16f Hydraulic design characteristics (mean and standard dev

Probability of Exceedance (-)

20 Design Elevation $=16 \mathrm{fHydralic}$ Still water lesign characteristics (mean and standard dev

Berm Factor = 1

Probability of Exceedance (-)
20 Design Elevation = 13fHydraulic design characteristics (mean and standard dev

$$
\begin{aligned}
& \text { Still water evel }=y . \pi \mathrm{rt} ; \sigma=0.8002 \mathrm{st} \\
& \text { Significant wave height toe } \mathrm{H}=2.4 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.24 \mathrm{ft} \\
& \text { Peak period } \mathrm{T}_{\mathrm{n}}=3 \mathrm{~s} ; \sigma_{\tau_{n}}=0.6 \mathrm{~s}
\end{aligned}
$$

Probability of Exceedance (-)

Probability of Exceedance (-)
20 Design Elevation = 10fHydraulic design charancteristics (mean and standard dev Still water level $\zeta=6.9 \mathrm{ft} ; \sigma=0.80623 \mathrm{ft}$
Significant wave height af toe $\mathrm{H}_{\mathrm{s}}=2.4 \mathrm{ft} ; \sigma_{\mathrm{Hs}}=0.24 \mathrm{ft}$ Peak period $T_{p}=3 \mathrm{~s} ; \sigma_{\mathrm{Tp}}=0.6 \mathrm{~s}$

